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We report results of a study of percolation on a two-dimensional Penrose 
quasilattice. After an extensive numerical analysis, we find that  two-dimensional 
universality is obeyed. The scaling exponents ~r and ~ have the values expected, 
r = 2.04 and ~ = 0.39, consistent with the universality class for percolation on a 
2D periodic lattice. But the percolation threshold Pc -0 .483 ,  differs from other 
2D lattices with the same average coordination number  z =  4. 

KEY W O R D S :  Bond percolation; quasilattice; universality; critical 
exponents; threshold; connectivity; Penrose tiling. 

1. I N T R O D U C T I O N  

The recent discovery (1) of icosahedral quasicrystals, which exhibit a diffrac- 
tion pattern with icosahedral symmetry known to be incompatible with 
periodicity, has generated much theoretical study of nonperiodic lattices 2. 
However, so far, theoretical work is directed toward explanation of obser- 
ved diffraction and electron microscopy patterns. Since the quasilattice is 
nonuniform in the short range, but globally homogeneous, and therefore 
intermediate in structure between periodic and random, it is worthy of 
further study. 

In this paper we report on an extensive numerical study designed to 
investigate percolation on a quasilattice. First we review some geometrical 
properties of the Penrose 2D quasilattice (PL) relevant to percolation. 
Then we test the scaling theory of percolation on the lattice. According to 
the theory, (3) which treats the percolation problem as a general second- 
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order phase transition, critical behavior and critical exponents are indepen- 
dent of lattice structure. To date this has only been tested on periodic lat- 
tices. 

In Section 2 we discuss the geometrical structure of the Penrose lattice, 
and the connection coefficients of vertices are given. The bond percolation 
threshold of the PL is examined in Section 3, and the result is interpreted 
in terms of the difference in the global connectivity of lattices. Then in Sec- 
tion 4 we give a detailed analysis of cluster statistics. The results are in 
agreement with the two-exponent assumption of the scaling theory of per- 
colation. Critical exponents are found to be the same as those found on a 
periodic lattice. This confirms the universality prediction. In the last section 
we summarize the results and comment on future studies. 

2. LATTICE S T R U C T U R E  

There are many ways to obtain quasiperiodic lattices. Two equivalent 
methods are widely used, namely algebraic transformation and geometrical 
projection. (4) In this paper we will restrict ourselves to the two-dimensional 

Fig. 1. A portion of a Penrose quasiperiodic lattice. There are eight different types of vertex, 
classified according to bond configuration. The ones labeled by 1-8 follow the labeling used in 
Eqs. (4) and (5). The average coordination number is 4 and there are twice as many bonds as 
vertices. 
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quasilattice with pentagonal symmetry known as the Penrose lattice (PL). 
Figure 1 shows a portion of the PL. It is a tiling of a plane by two different 
rhombuses in a nonperiodic fashion. There are eight different types of ver- 
tices in the PL if one classifies them in terms of their nearest neighbor 
configurations. (2) We label them as 1-8, respectively, as shown in Fig. 1 
(these vertices previously have been given names such as sun, star, etc.). 
Each type of vertex has a different coordination number and appears 
in the PL with different frequency. The number of fat rhombuses is 
~= (51/2+ 1)/2 times larger than the number of thin ones. The orientation 
of these rhombuses is equally and uniformly distributed in the tenfold sym- 
metry directions. This implies isotropic distribution of vertices and bonds. 

Let z(i) be the coordination number of the ith-type vertex, p(i) be 
its frequency, and Z the average coordination number. Let p(i, j)  be the 
frequency that a bond connects the ith type of vertex to the j th type of 
vertex. Then the following relations hold: 

8 
p(i) = 1 (1) 

i=1  

p(i, j)  = p(j, i) (2) 

8 8 

p( i , j )=  ~ z(i) p ( i )=2 (3) 
i , j=l  i=1  

From de Brujin's algebraic description (a) of the PL we derived the exact 
expressions 3 

1 
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2r 2 2~ 2 (5) 

0 2"C 3 

0 2"C 4 
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2 Strictly speaking, there are only seven different types of vertex if one classifies according to 
the branching pattern of the vertex. However, for types 1 and 4 shown in Fig. 1, due to the 
totally different type of nearest neighbor vertex to which they are connected, they are treated 
as different. 
Equation (4) was derived independently in Refs. 5 and 6. 
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These results were confirmed numerically. A computer program has 
been developed to determine the interconnection of lattices. Simulation on 
the PL with sample size up to 50,000 lattice sites shows that the above 
equations are satisfied to order (l/N), where N is the total number of lat- 
tice sites in the system. This shows that the distribution of vertices in the 
PL is uniform. In other words, the long-range fluctuation of the lattice 
structure is very small. On the other hand, the short-range fluctuation is 
very large, for example, the local coordination number and nearest 
neighbor configurations are quite different for different vertices, as is seen 
in Fig. 1. 

Another important property of the PL is its local n-site configuration 
number C(n), which is defined as the number of possible configurations in 
a block of n lattice sites (with fixed area). ~7) The number C(n) is constant 
for a periodic lattice and an exponential function of n for random lattice 
structures. It can be shown straightforwardly that for the Penrose lattice, 
C(n) is linear in n. From this point of view the PL is a structure between 
the periodic and the random systems. But average quantities such as the 
coordination number, the appearance frequency of different types of ver- 
tices, and their orientation order are the same (to order l/n) for all those 
n-site configurations. So for those physical quantities that depend on 
long-range order only, the PL behaves much as a totally ordered system. 
This is crucial for understanding the results of percolation on PL. 

3. P E R C O L A T I O N  T H R E S H O L D  

For the past two decades, percolation problems have been extensively 
studied both analytically and numerically. On the analytical side the scal- 
ing theory, which treats the percolation problem as a general second-order 
phase transition, has been quite successful, and numerical simulation on 
periodic lattices gives results in good agreement with theory. The Penrose 
lattice is the first example of a nonperiodic lattice with well-defined global 
symmetry and structure. Due to the nonperiodicity, the local structure of 
the lattice is nonuniform and fluctuates. So it provides an ideal lattice 
structure to test the scaling theory, because the critical behavior near the 
phase transition is a long-range fluctuation phenomenon. We have 
simulated the bond percolation on the PL extensively with a lattice system 
up to 50,000 lattice sites. In this section we first address the percolation 
threshold, and in the next section we discuss universality and critical 
exponents. 

Recall that bond percolation means each bond in the lattice has 
probability p of being connected. The percolation threshold Pc is defined 
such that for p > Pc there exists an infinite connected cluster, and below it 
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all clusters are finite. Qualitatively, one defines the percolation probability 
P(p) as the probability that a randomly chosen bond is a connected bond 
belonging to the infinite cluster. Then 

P ( p ) = 0 ,  p<p,.; P ( p ) > 0 ,  p>~p~. (6) 

Figure 2 shows the result of simulation of P(p) on the PL with 90,000 
bonds. All data points are the result of an average of 20 runs, except for 
those close to Pc, which are the result of 50 runs average (see Fig. 4). We 
also have analyzed the finite-size scaling effect, with lattice size 500, 1000, 
10,000, 40,000, and 90,000 bonds, which shows very good convergence of 
Pc with lattice size larger then 10,000 bonds. From details of all these 
studies and analysis of cluster distribution statistics around threshold (see 
next section), we conclude 

Pc = 0.483 +_ 0.005 bond percolation (PL) (7) 

An infinite cluster is shown in Fig. 3. 
As is well known, critical exponents are dimension-invariant, but the 

percolation threshold is different for different lattice structures. This is 
because it is the lattice structure, namely the connectivity, that determines 
p~.. An important quantity is the average coordination number of the lat- 
tice i, which determines the local connection. For the 2D bond percolation, 
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Fig. 2. Percolation probability P(p) (normalized by the total number of connected bonds) 
as a function of p. ( - - )  A guide to the eye; ( + )  simulation points. The lattice size is 90,000 
bonds. All points are the result of taking 20 as a run average, except those very close to p~., 
which are the result of a 50-run average. 
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Fig. 3. An infinite cluster at p = 0.484, which is just  slightly above the threshold. The system 
size is 90,000 bonds. 

it is known that p c s  for triangular, square, and honeycomb lattices. 
However, for the Kagom6 lattice, (8/ which is periodic with coordination 
number 4 the same for all vertices, Pc = 0.45. For  the Penrose lattice, from 
Eqs. (3) and (4) one gets 

i=8  

Z= ~ z(i) p(i)=4 (8) 
i=1 

but p~. for the Penrose lattice, as we found, is also smaller than that of the 
square lattice, but larger than that of the Kagom6 lattice, though they all 
have the same average coordination number. Obviously ~ is insufficient to 
characterize the connection property of a lattice structure. 

An important missing factor is that we did not take the global struc- 
ture of the lattice into account. Since Pc is determined by the existence of 
an infinite cluster, which is a global structure, it is in general also depen- 
dent on the global connectivity of the lattice. Quantitatively, define B(n) as 
the number of bonds to which a seed in the lattice can aggregate in n steps, 
with nearest neighbor hopping. For a lattice that is homogeneous over a 
large area (namely the average quantity has a meaning), one expects that 
for large n 

B(n) = gnd (9) 
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in d dimensions. The proportionality constant g is a measure of global con- 
nectivity. In general it will be different for lattices with the same Z but dif- 
ferent lattice structure. For  the case we are considering, namely s = 4 in 2D, 
there are three lattices: Square (S), Kagom6 (K), and Penrose (P). It is not 
difficult to obtain g for these lattices: 

~2 5 9 
g (S)=-~-=4 ;  g ( P ) = 5 - 2 - ~ - - 5 = 4 . 4 1 ;  g ( K ) = ~ = 4 . 5 0  (10) 

where r = (51/2+ 1)/2 is the golden mean. Now compare with the per- 
colation threshold: 

pc(S)=0.500; pc(P)=0 .483+0.005;  p , (K)  = 0.449 _+ 0.032 (11) 

we conclude that Pc is in general a decreasing function of g with fixed 5. 
For the quantitative relation between these quantities, more work needs to 
be done. This work is in progress. 

4, C R I T I C A L  E X P O N E N T S  A N D  U N I V E R S A L I T Y  4 

The transition at percolation threshold is a second-order continuous 
phase transition. According to the modern theory of phase transitions the 
critical behavior near Pc is universal, in other words, it is independent of 
the details of lattice structure. Only the Euclidean dimension is a relevant 
quantity, which distinguishes different universality classes. Quantitatively, 
the scaling theory predicts that all critical exponents are the same for all 
lattices in the same dimension. Exponents are related by universality 
relations, and only two of them could be independent. Therefore, to test 
universality only two exponents need to be calculated. 

We have chosen to calculate cluster distribution exponents. The 
cluster-size distribution function n , ( p )  is defined as the average number of 
clusters each containing s occupied sites. Near the percolation threshold, 
the two-exponent assumption (3) 

n , ( p )  oc s ~ f ( z ) ,  z =- ( p  - Pc)  s";  s --+ c~, p --+ p ,  (12) 

has been very successful and tested in periodic lattices. The usual critical 
exponents of percolation theory .are related to z and ~ by 

= z - - 2 ,  3--T 1 
~=2---- ,~--1 fl 7 -  , 6 -  (13) 

a o- a r - 2  

4 In this section we follow the usual convention in percolation theory and write ~ for a critical 
exponent. This should not be confused with the "Golden Mean" used in Sections 1 3. 
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Fig. 4. (a) Log-log plot of cluster distribution function n s ( p )  as a function of cluster size 
(smashed, see text) at p = 0.483. A least squares fit gives the slope of the line as r = 2.04 + 0.04. 
(b) Test of scaling, Eq. (12), very close to p~. The exponents are taken from Eq. (13). Here 
In v s is plotted as a function of reduced variable z. Scaling requires that different symbols lie 
on a single curve. (A)  p = 0.47, (O)  0.46, and ([Z) 0.45. All points are results of a 50-run 
average on the lattice with 90,000 bonds. 
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The best values of ~ and ~ obtained by bond percolation on a triangular 
lattice of 1.6 x 10  7 sites are (3) 

r = 2.05, a = 0 . 3 9  (14) 

Percolation around Pc on a Penrose lattice with 45,000 lattice sites 
was extensively simulated in our work. The primary restriction on the 
system size is the huge dynamic memory required for indexing the lattice. 
We calculated the cluster distribution function n~(p). In order to reduce 
fluctuations in statistics, we divide ns(p) into groups {3) with size interval 
from s = 2 i to 2 i+ 1 _ 1, i = 0, 1, 2,.... For  each group we took as the average 
s the geometrical mean of the upper and lower ends of the size interval. 
This approximation should be the better the closer n, is approximated by 
an s -2 decay law. Figure 4 shows the results of cluster statistics based on 
50 runs on a lattice with 45,000 vertices (90,000 bonds). We also did 
several simulations on different lattices (different members of the same local 
isomorphism class) of the same size, the results do not differ from one 
another. This is due to the small long-range fluctuation we discussed in 
Section 2., and the point is essential because for the infinite system all mem- 
bers of the same local isomorphism class are degenerate. 

In Fig. 4a we plot In n,(p) against Ins  at the percolation threshold 
p~=0.483. The slope of the straight line fit gives the exponent 

= 2.04_+ 0.08. Within the error bar it agrees very well with the known 
exponent [Eq. (14)]. In Fig. 4b we plot In v(z)= ln[n,(p)/ns(p~)] against 
z=  ( p - p j S  for different values of p. With a = 0 . 3 9  one sees that all 
points fall on a single curve within a reasonable range. Therefore we con- 
clude that percolation on a quasilattice belongs to the same universality 
class as percolation on a periodic lattice, and the critical behavior can be 
understood in the frame of scaling theory. 

A side benefit of Fig. 4b is that this plot is an effective way to deter- 
mine Pc- As one can see from Eq. (12), in v(z) is 0 at z = 0 .  Furthermore, 
the deviation of ns(p) from s -T is different on the two sides of z = 0. For 
z > 0 (p > Pc), n,(p) decays more slowly than s -T, which makes In v(z) an 
increasing function ofz.  For  z < 0 (p < Pc), n~(p) decays more rapidly than 
s ~, and in v(z) is a decreasing function of z. Therefore, by examining the 
deviation of n,(p)  from the explicit exponential decay law, one can effec- 
tively determine the percolation threshold Pc. 

5. C O N C L U S I O N S  

In summary, we have analyzed the geometrical structure of the 
Penrose quasilattice. The connectivity structure of the lattice was analyzed 
and the connection coefficients given. Bond percolation on the Penrose 
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lattice has been studied. We found the percolation threshold 
p,. = 0.483 +_ 0.005. This is smaller than that of the square lattice and larger 
than that of the Kagom6 lattice, though all of them have same average 
coordination number. We interpreted this in terms of a difference in the 
global connectivity in these lattices. Cluster statistics around Pc have been 
studied, and the results agree well with scaling theory. This is the first time 
that scaling theory has been explicitly tested on a nonperiodic lattice. 
Finally, we would like to point out that the short-range nonhomogeneity in 
the lattice structure of the Penrose lattice and its high orientational sym- 
metry make it more closely resemble a real random medium. 
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